Thursday, August 19, 2010

video on Shofar Practice Guide

To watch video on Shofar Practice Guide go to:

http://tinyurl.com/29qhh3g


Or in writing http://tinyurl.com/27ykf94

Labels: , ,

Monday, August 16, 2010

To watch video on Shofar Practice Guide

To watch video on Shofar Practice Guide go to:

http://www.youtube.com


Search "Shofar Practice Guide"

or

http://www.youtube.com/watch?v=BA-uL7RSCyo

Labels: ,

Sunday, August 15, 2010


Shofar:  Demonic Defense or Rabbinic Call to Repentance?
Arthur L. Finkle
Sol B. Finesinger made the argument that, although the shofar is currently used in the religious service and is supported by Rabbinic materials, the shofar was also used to chase demons away during the early history of the Jewish People (up  to the end of the second Temple (70 CE).
He posits his investigation by tracing the mention of the shofar and chatzotrot (trumpets) in the Scriptures. It is gainsaid that the trumpets sounded during most of the Temple ceremonies. The shofar was specifically mentioned to announce the Jubilee Year on the Day of Atonement.
He traces the development of the Hebrew calendar by citing Morgenstern that the New Year began at apx the vernal equinox (on the tenth of the month).  However, the new moon celebration (Rosh Hashanah) developed to become the beginning of the New Year. The use of the shofar thereby gravitated from Yom Kippur to Rosh Hashanah.
Citing the transition of this calendar fact, he cites R. Chisda in Shabbat 36a: “The following three groups of words had their meaning interchanged after the destruction of the (first) Temple. What was formerly called hatzosrot was called shofar and what was formerly called shofar became hotzotzrot” From this quotation, Finesinger infers that as a consequence of the destruction of the Temple, the hasotzrot, only sounded inside the Temple now made way for the people-popular shofar. Indeed, he cites RH, iii. 1`, 58d that cites a baraita (legal decision not incorporated into the Mishnah, the codified law. (Compiled in 200 CE).
Finesinger then cites the transition from the Sadducees (Priests) to the Pharisees, subsequent to the destruction of the Temple. Indeed, the folk tradition was transformed from defending demons to calls for individual and communal repentance as cited in the Mishnha and Talmud, both formulated in the age of the Rabbi’s.
For example, in the Scriptures, there is ample evidence of the demonic influence and the fear it engendered upon the people. Ps 47:6 and Ps. 98:6 provide the kingship of God. It pictures the king’s ascending the throne to the sound of the shofar to ward off the demonic spirits.
Jeremiah 4:19 associates the sound of the shofar with war and the tremendous fear of the people.
Ezekiel 33:3-6 warns of war when the people heard the sound of the shofar.
Hosea 5:8 warns the people that danger is near. Zach 1:16 warns the people with shofar sounds at the coming of God. Am. 3:6 assumes the people are terrified at the sound of the shofar. In Am 2:2, the shofar sounds at the destruction of Moab’s distress.
Then there is the famous shofar accompaniment WHEN Moses ascends Mount Sinai as a warning for the people to keep a distance (Ex. 19:16; 19; 20:8)
Gideon’s attack of the Midianite camp was accompanied by the shofar. Jud. 7:16; 18-22)
The famous story of the shofars at Jericho is intended to terrify the people of Jericho either as psychological warfare or of dispossessing resident demons. See Jos. 6:4-9.
In tractate Rosh Hashanah 34a, THE Rabbi’s give Ps. 81:4 by clarifying the use of trumpets and shofars by citing Ps. 81:

‘Blow on the shofar at the new moon, at thee covering, for the day of our festival.’  Now which festival is it in which the new moon is covered? It can be none other than Rosh Hashanah, and in connection to with it, God says, ‘shofar.’

Further he cites Rosh Hashsanh 16a, when the Rabbi’s cannot come up with a satisfactory explanation of why we sound the Shofar on Rosh Hashanah; the Rabbi’s declare that it is a Divine Command. In other words, they have not explanation because he feels that the holidays of Rosh Hashanah and Yom Kippur (the 1ast of the month of Tishrei and the 10th) were flip-flopped, the folkways of the people of sounding shofar persisted. But the Rabbi’s wanted to dignify the rationale for sounding the shofar.
Even if we accept that the Rabbi’s formulated a rationale for sounding Shofar on Rosh Hashanah, there are citations in Hebrew literature wherein the demon defense persists. For example, in RH 16a:

Why do they sound the tekia and the treua when the people stand? In order t confound S. R. Isaac also said in any year at the beginning of which they do not sound the tekia, they have to sound the terua at the end. Why? Because Satan was not confounded [with the tekia alone].
Further the the Shulchan Aruch, or a th16 century codification of Jewish Law, written in the 16th century.
He shall swallow up Death for ever (Is. 25:9) and it is written (Is. 27:3):’And it shall be on that day a blast will be blown on a big shofar.’ etc.’ And when Satan hears the sound of the shofar, the first time, he becomes anxious. But when it happens a second time, he says: ‘Indeed this is the shofar REFERREDTO IN THE VEWRSE (Is. 27:13): ‘A blast will be blown on the big shofar.’ The time to be swallowed up has come. He [Satan] stars back and is confounded . . .
An even more curious appearance of the demon defense is mentioned in
Tractate Moed Katan 27b in which a story R. Hammuna when he heard a shofar while he was traveling. He heard a shofar denoted the someone’s death... Generally, death and death ritual, even today, deal with evil spirits which surround the body until burial and after. Thus the reason for the Shomer (watchman of the deceased prior to burial); the circuitous path to the cemetery (7-circles); THE covering of mirrors at home. Finesinger infers that such noise from the shofar, although might be to announce a death, more probably dealt with the demon defense to ward off evil spirits.
Excommunication, while not used much today, had the connotation of noise (sound of the shofar) warding off evil spirits associated with a non-believer. Indeed, the legend in the name of Ulla: Barak excommunicated Meroz with 400 shofars. See Shavuot 36a.
Moreover, in Taanit I, 6, we find reference fasting for a week, when a drought occurs. Ostensibly, to encourage rain, by the second week, we fast and sound the shofar to ward off the demons presumably causing the drought.
Finally (although there are other example too numerous to recite), Hullin 105b provides the story of the jug that broke wherein R. Mar bar R. Ashi sounded a shofar to drive out the demons that destroyed the jug.
There may be merit in Finesinger’s hypothesis that the role of shofar may indeed have changed over the long period of Jewish history. That the recitation of secular shofar soundings outside the Temple and trumpet sounding inside the Temple cited in Scripture is gainsaid. The fact that Jewish ritual developed over the centuries, particularly when the Rabbi’s took over leadership form the Priests, is conceivable. And the inconsistencies in Jewish literature regarding the Rabbinic call to repentance and the People’s ‘demon defense’ become more understandable in this light.


Bibliography

Finesinger, Sol B.,  "The Shofar," HUCA, VII–IX (1931-32), 193-228
HUCA=Hebrew Union College Annual
Morgenstern, “The Three Calendars of Ancient Israel, HUCA vol. I, pp13-38; the additional notes in HUCA, vol iii, pp. 77-107; the Gates of Righteousness, HUCA, vol vi, especially pp. 18-19. 32, 35, 37
Julian Morgenstern (1900-1974), President of the Hebrew Union College from 1922-1947.
.

Labels: ,

Monday, July 26, 2010

Shofar Practice Guide



Shofar Practice Guide


Arthur L. Finkle










WE MUST WARM-UP! This should not be left to chance nor treated lightly by a serious musician on any instrument. If I do not warm-up properly, my performance certainly suffers. Most brass players have several routines. For Shofar sounding, I suggest warming up on the fundamental note. In simple terms, a noise from a musical instrument plays more than one note, called Harmonics, but the principal musical tone produced by vibration (as of a string or column of air) is the fundamental or most prominent tone. http://dictionary.reference.com/browse/fundamental Then, focus on your attack (how you articulate the note). Then play the Tekiah, Shevorim, Shevorim-Teruah, and Tekiah. Your warm up should be at home because the shul does not offer privacy. In shul, you should hold the Shofar between your arms so that the horn will become the same temperature as your body because the instrument should be the same temperature or more than the room. A cold note becomes flat (off-tune or atonal).



The shofar’s sound is similar to creation as that of a brass instrument b(Trumpet, French horn, trombone, tuba, etc) in that the lips vibrate creating a “buzzing.”


You should practice buzzing; (brass players do this by playing the mouthpiece alone. In the case of Shofar playing, you can buzz by shaping your thumb and forefinger in the shape of a mouthpiece and blowing into it to stimulate your embouchure. (See The Art of French Horn Playing by Philip Farkas, The Complete Method by Milan Yancich, and Embouchure Building by Joseph Singer; there are many good resources out there.)


When Should I Warm-Up? How Much Should I Practice?


Professional brass players warm-up every time they get the instrument out of the case to play. The first warm-up in the morning is the most important, as it sets up your embouchure for the rest of the day. The second and third warm-ups are usually shorter, but need to be there to maintain and build the embouchure.


Related issues are how much to practice, and when. I feel, if time allows, the serious brass student or professional usually practices three times a day for no more than one hour apiece. A Shofar sounder, not being a professional in the brass instrumentalist sense of the word, should practice each day at the same time of day. Practice standing up; sitting down will change your embouchure.


Initially, practice the fundamental note until you feel your muscles get adjusted. Do not play too much beyond this level. If they tire, your muscles are telling you that they have had enough. By repeated playing, however, your musculature will develop into high quality sound and endurance. Ten minutes is the usual limit.


Once, you have mastered the one fundamental note, you should concentrate on the attack. The quality of an attack is determined by the position of the tongue’s touching the lips. In some cases, the tip of the front of the tongue can be the part of the tongue used to tongue the attack. In other cases, you can use the side of your tongue. Some use the side of their side tongue and move it back. The technique that is most effective for the Shofar Sounder – and still allows maintenance of the correct embouchure -- is the correct way.








Week 1






During the first week, work on your embouchure (muscle tone of your lip and surrounding facial muscles) by sounding the most prominent note (fundamental).


How long – start with no more than 5-minutes per day; gradually increase this practice time so you will build and tone your embouchure.






How long – start at 5-minutes per day; gradually increase this practice time so you will build and tone your embouchure.






SHOFAR RANGE




















Week 2






Begin the play the sets






Phrase I - T-SH-R-T (3X) Tekiah-SHevarim-teRuah-Tekiah



Phrase 2 - T-SH-T (3X) Tekiah-SHevarim -Tekiah


Phrase 3 - T-R-T (3X) Tekiah- teRuah-Tekiah






You may sustain ‘lip fatigue’ – your lip will tire and will not respond the way you desire.














You should begin with phrase 1.






The tekiah – is one blast – some end it with a small ‘up’ not (but is not necessary)


The shevorim – three moaning sounds. In music we call these sounds slurs. It begins with a low note and slides up to the dominant note. You accomplish this by tightening the lips from the dominant note to the third above note.


The Tru’ah – nine staccato notes. To avoid confusion, count the nine Aas three triplets. This, xxx; xxx; xxx. The notes are articulated with the tongue touching the mouthpiece top tip for nine times.


Tonguing needs practice and repetition. Thus, it becomes part of the protocol.






Week 3






Continue practicing the phrases for as many times as you can In doing so, you will memorize the association of the sounds and their names . Also, you will build stamina and embouchure definition. Note that you are focusing on endurance athletics but you do need a certain amount of stamina and lip strength to beat fatigue.  







Learn Prayer To Be Recited On Rosh Hashanah



Praised are You, O Lord, Master of the Universe who has commanded us to hear the shofar




Baruch atah Adonai Eloheinu Melech


Ha-olam, asher kid-shanu b-mitz-votav


Vi-tzi-vanu Lish-moa Kol Shofar.







First Day Only




Week 4






Work from the prayer book to practice each series of sounds. Some congregations sound thirty note; others, ninety; most, 100 sounds. 


On a couple of the days, I suggest you work with the kri’ah (the one who pronounces the sounds so you can coordinate your activities. You also will ‘feel each other out,’ as so often happens in musical schemes.






On the day before Rosh HaShanah – do not practice. Although Jewish law forbids such practice, the musical reason is to enable your embouchure to rest on the day prior to performance, such as soloists do prior to musical recitals.



Special thanks for significant input of premier shofar Sounder Michael Chusid, RA, FCSI

Labels: , , ,

Monday, July 5, 2010

Evidence of Shofar Usage in the Holy Temple

Evidence of Shofar Usage in the Holy Temple

Arthur L. Finkle

In the Mishnah, Arakhin, 2:3 provides evidence that the shofar was sounded never less than 21 blasts nor more than 48 blasts each day.

1) There are never less than twenty-one blasts in the Temple and never more than forty-eight.

There was a minimum of 21 daily trumpet blasts in the Temple and a maximum of 48.
The explanation of this section can be found in the Mishnah, Sukkah 5:5. The shofar sounded:

• one blast in the Temple
• three at the opening of the gates
• nine at the morning daily burnt offering
• nine at the evening daily burnt offering.

At the additional offerings, they added another nine.

At the eve of the Sabbath they added six more; three to cause the people to lay down their work and three to mark the distinction between the sacred and the profane.


Labels: , ,

Saturday, June 19, 2010

The ‘Sound’ of Music

The ‘Sound’ of Music

Arthur L. Finkle


Any sound, whatever it might be, is caused by something vibrating. Without vibration there can be no sound. The vibrating body causes the air particles next to it to vibrate; those air particles, in turn, cause the particles next to them to vibrate. In this way a disturbance of the air moves out from the source of the sound and may eventually reach the ears of a listener. When we hear a sound, air vibrates against our eardrums causing them to vibrate also. These vibrations are detected and analyzed by our brains. Although it is usually air that acts as the transmitting medium, sound can be transmitted by other media, e.g. water, building structures.


Sound does not consist of air moving towards us in bulk; it travels through the air as a sound wave. A sound wave consists of a disturbance moving out from a source to surrounding places with the result that energy is transferred from one place to another.


As the wave passes, the disturbance of particles is in the direction of the wave travel.


The displacement of particles of the medium results in alternate regions of high particle density and low particle density. Regions of high particle density are called compressions. Regions of low particle density are called rarefactions.


Rarefactions and compressions both move in the direction of the wave travel. The particles of the medium do not move bodily in the direction of the wave movement; they vibrate about their normal positions. Each complete vibration of a particle is called a cycle ( i.e. from its starting position, to a maximum distance in one direction, back through the starting position, then to a maximum displacement in the opposite direction and back to the starting place).

 

The number of cycles completed in one second is called the frequency of the vibration. One of the most noticeable differences between two sounds is a difference in pitch (high to low). It is the frequency of a sound that mostly determines its pitch.


Frequency is measured in hertz, one hertz (Hz) being one cycle per second.


(One thousand hertz = 1 kilohertz = 1 kHz.) A high frequency vibration produces a high pitched note; a low frequency vibration gives a low pitched note.


The human hearing range (audible range) is about 16Hz to 16kHz. The frequencies of notes that can be played on a piano range from 27.5 Hz to just over 4kHz.


Any note played on a piano will sound different to a note of the same pitch produced by another type of instrument, e.g. a tuning fork.


The musical note produced by a tuning fork is called a pure tone because it consists of a tone of one frequency. A note played on a piano, or most other instruments, consists of several such tones all sounding together at different frequencies. These frequencies are related to the frequency (usually the lowest one) which gives the note its characteristic pitch.


In other words, when we hear sound from an instrument, we actually hear several sounds
(harmonics)


The tone with the lowest frequency is called the fundamental. The other tones are called overtones If the overtones have frequencies that are whole number multiples (x2, x3...up to x14) of the fundamental frequency they are called harmonics. It is the difference in the harmonic content of notes that gives each musical instrument its characteristic sound or timbre ("tam-brah"). Therefore although the highest note of a piano has a fundamental frequency of just over 4kHz, equipment used to record music must be able to handle much higher frequencies to preserve the harmonics associated with each note. (1.9 Meg) To set the mood, listen to Anthony Heinrichs playing part of the cadenza from the trumpet concerto by Joe Wolfe.
Overview
• The player provides air at a pressure above that of the atmosphere (technically, from a few kPa to perhaps tens of kPa: from a few percent to a few tenths of an atmosphere). This is the source of power input to the instrument, but it is a source of continuous power. In a useful analogy with electricity, it is like DC electrical power. Sound is produced by an oscillating motion or air flow (like AC electricity).
• Once the air in the instrument is vibrating, some of the energy is radiated as sound out of the bell. A much greater amount of energy is lost as a sort of friction (viscous and thermal loss) with the wall. In a sustained note, this energy is replaced by energy put in by the player.
• The column of air in the instrument vibrates much more easily at some frequencies than at others (i.e. it resonates at certain frequencies). These resonances largely determine the playing frequency and thus the pitch, and the player in effect changes the length of the instrument---and thereby the frequencies of the resonances---by suitable combinations of inserting extra pieces of pipe via the valves, or by changing the length of the slide in the case of the trombone.
Let us now look at these components in turn and in detail.
Sound
First something about sound. If you put your finger gently on a loudspeaker you will feel it vibrate---if it is playing a low note loudly you can see it moving. (More about loudspeakers.) When it moves forwards, it compresses the air next to it, which raises its pressure. Some of this air flows outwards, compressing the next layer of air. The disturbance in the air spreads out as a travelling sound wave. Ultimately this sound wave causes a very tiny vibration in your eardrum---but that's another story.


Frequency
At any point in the air near the source of sound, the molecules are moving backwards and forwards, and the air pressure varies up and down by very small amounts. The number of vibrations per second is called the frequency (f). It is measured in cycles per second or Hertz (Hz). The pitch of a note is almost entirely determined by the frequency: high frequency for high pitch and low for low. 440 vibrations per second (440 Hz) is heard as the note A in the treble clef, a vibration of 220 Hz is heard as the A one octave below, 110 Hz as the A one octave below that and so on. We can hear sounds from about 15 Hz to 20 kHz (1 kHz = 1000 Hz). A contrabassoon can play Bb0 at 29 Hz. When this note is played loudly, you may be able to hear the individual pulses of high pressure emitted as the reed opens and closes 29 times per second. Human ears are most sensitive to sounds between 1 and 4 kHz - about two to four octaves above middle C (See hearing curves). That is why piccolo players don't have to work as hard as tuba players in order to be heard. To convert from notes to frequencies and back again, see notes.
The Lips Control the Air Flow
Brass players can make musical sounds with just their lips, as you'll hear in the sound files below. This is one of the first things a brass player learns: you close your mouth, pull your lips back in a strange smile, and blow. The result may be anywhere between a low pitched 'raspberry' or a high pitched musical note, depending on the tension in your lips (how hard you pull them backwards in that smile, and other parameters).


'Buzzing' with the lips alone, and varying the tension.
How does that work? Lips are springy: if you pull your top lip forward with your fingers and let it go, it will spring back to its original position. Lips also have mass, and a mass and a spring together can oscillate, although lip vibrations are more complicated than the linear mass-and-spring oscillator that one finds in introductory physics books. What happens here is a cycle that converts the DC air pressure in your lungs into an oscillating air pressure and air current. The air pressure in your mouth (1) forces the lips open (2), which lets the air rush out. This lowers the pressure in the mouth (3), so the tension in the lips pulls them closed (4), and the cycle repeats. (This explanation is rather simplified: the Bernouilli effect due to the flow of air through the opening also acts to close the lips. Further, the internal motion of each lip is a little complicated.)


The more tension you apply to your lips (the harder you pull your lips backwards in a strange smile), the more quickly they spring back into position. If the whole cycle takes a time T (called the period), then there are (one second)/T cycles per second. So the frequency f, in cycles per second, is just f = 1/T. All else equal, high lip tension gives high frequency and so high pitch. In the sound files above (play them again), the lip tension is increased and decreased smoothly.
The film clip below was made using a transparent yidaki (didjeridu). On the left you see a high speed video of the lips, on the right schlieren images of the air jet from the lips. More details on our yidaki (didjeridu) site.
Adding (only) a mouthpiece makes relatively minor changes: it can reduce the amount of the lips that move, and it allows the pressure outside the lips to be a little different from atmospheric. We'll discuss mouthpieces in detail later, but for now here is a sketch of the lips and a horn mouthpiece. Many players position the mouthpiece asymmetrically, so that it covers more of the upper lip than the lower lip, as is shown here.


Playing Softly and Loudly
This simple picture already allows us to explain something about how the timbre changes when we go from playing softly to loudly. If we play softly, and especially if we play a high note softly, the lips don't move fast enough and don't have enough time to close completely. In this case we observe nearly sinusoidal vibration: the system is behaving like the linear mass-and-spring oscillator of physics texts. This means that the fundamental in the sound spectrum is strong, but that the higher harmonics are weak. This gives rise to a mellow timbre. Playing loudly, the lips do close, and may even close abruptly. This gives what physicists call clipping and nonlinear behaviour, which produces more high harmonics. As well as making the timbre brighter, adding more harmonics makes the sound louder as well, because the higher harmonics fall in the frequency range where our hearing is most sensitive (See hearing curves for details).
The Effects of the Bell.
Now there are (at least) two problems with a cylindrical pipe like this: first, the notes are too far apart to be musically useful. Second, it's not loud enough (and what's a brass instrument for, eh?). Adding a flare and a bell reduces both of these problems. The flared section of the bore in many instruments are almost conical. First let's look at what this does to the spacing of the frequencies. In the page about pipes and harmonics, we saw that closed conical pipes have resonances whose frequencies are both higher and more closely spaced than those of a closed cylindrical pipe.


In a Shofar, the bell is minimized and is usually as narrow as the bore so the bell has minmal effect.


The Effect of the Mouthpiece
The mouthpieces of brass instruments have a rounded section that fits comfortably against the lips, an enclosed volume of air, a narrow constriction, and a taper that widens out to meet the bore of the body of the instrument. The enclosed volume may be approximately conical, as in many horn mouthpieces or cup shaped, as in most other brass instruments.


The Shofar has a distinctive mouthpiece unique to the instrument because all instruments are custom made. Some mouthpieces are shallow (giving a blaring sound); some are deep (giving a mellow tone).


When placed against the player's lips, the enclosed volume is sealed at one end by the lips, and has the constricted part of the pipe at the other end. You might imagine it as a tiny bottle, with your lips at the base of the bottle, and the constriction representing the neck of the bottle. Now, just as the bottle has a resonance that you can excite by blowing over the top, the mouthpiece has a resonance that you can excite by slapping the wide end against the palm of your hand. When shopping for mouthpieces, brass players sometimes do this to compare what they call the 'pop tone'. It is much easier to hear the pitch if you compare two: say a trumpet and a trombone mouthpiece. As you might expect, the larger the volume (all else equal), the lower the pitch of the pop tone. This is an example of a Helmholtz resonator, whose frequency depends on the enclosed volume and the geometry of the constriction.


The mouthpiece does a few things. First, it allows you to connect the pipe to a comfortably large section of lips. Then there are the acoustic effects of the enclosed volume and constriction. One effect is to lower the frequency of the very highest resonances opposing the effect of the flare (bell), which tends to raise all the resonances.


Another is that to strengthen some of the resonances.
http://www.phys.unsw.edu.au/jw/brassacoustics.html




For more information about Shofar and other Holy Temple instruments, we have written extensively on the Shofar and have three websites






1) Joint Effort with Michael Chusid, an expert Shofar sounder and commentator


http://www.hearingshofar.com
2) Shofar Sounders WebPage


http://shofar221.com
3) Shofar WebPage
http://shofar-sounders.com

Labels: , , ,

Monday, June 14, 2010

Shofar Sounds and the Will to Live

Shofar Sounds and the Will to Live

Arthur L. Finkle

I have a story that took years in the explanation. As was is my custom, I sounded the shofar on the Second Day of Rosh Hashanah at a Jewish Nursing Home near the Trenton-Princeton area in New Jersey. (I sounded the first day at a local synagogue.)
On this subsequent day, after the prayer service at Nursing Home, the Social Worker, asked if I could go to a local hospital where one its residents (95-years old and in failing health) was treating. I would have agreed t sound the shofar for anyone but this person was someone whom I revered. He was an extremely successful appliance dealer from the in 1950’s (TV’s and time saving devices) onwards. He was also very active in the Orthodox Jewish community, having been President of one of the synagogue, an Officer of the Jewish philanthropic organizationin the region.
Upon entering the hospital, I went to the room he was assigned and found the bed empty, portending no good. Nevertheless, the Nurse indicated that he had been transferred into another room in the Cardiac Care Unit (CCU).
At the Nurses’ station in CCU, I found that Mr. Lavine was safely secured in his room. The perplexing issues became was he well enough to receive visitors; and would the sounds of the shear possibly trigger more heart attacks
I showed the shofar to the Nurse, who obviously experienced something she had never seen before. I told her of the obligated to HEAR the sounds of the shofar. When the new Jewish Year begins. (I also explained the Jewish calendar.)
She consented to my visit to Mr. Lavine’s room as long as I closed the door and sounded the shofar softly.
Mr. Lavine, who has been a friend of the family and quite religious, cried when he heard the mystical sounds. I felt pretty good in a spiritual kind of way.
I felt better when, two weeks later, a note from his daughter, who lived 6-hours away. thanked me.

But the story does not end here. In talking to Mr. Lavine’s daughter after a recent Facebook contact, she told me that her Dad had “do not resuscitate orders” and “no heroics” attached to his chart. After he heard the shofar sounds, his will to live came BACK.
Indeed, Mr. Lavine lived to the age of 98.

Now THAT made me glow.